The Critical Exponent of Doubly Singular Parabolic Equations

نویسندگان

  • Xinfeng Liu
  • Mingxin Wang
چکیده

In this paper we study the Cauchy problem of doubly singular parabolic equations ut = div ∇u σ ∇um + t x u with non-negative initial data. Here −1 < σ ≤ 0, m > max 0 1 − σ − σ + 2 /N satisfying 0 < σ +m ≤ 1, p > 1, and s ≥ 0. We prove that if θ > max − σ + 2 , 1 + s N 1 − σ − m − σ + 2 , then pc = σ +m + σ +m− 1 s + σ + 2 1+ s + θ /N > 1 is the critical exponent; i.e, if 1 < p ≤ pc then every non-trivial solution blows up in finite time. But for p > pc a positive global solution exists. © 2001 Academic Press

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

A note on blow-up in parabolic equations with local and localized sources

‎This note deals with the systems of parabolic equations with local and localized sources involving $n$ components‎. ‎We obtained the exponent regions‎, ‎where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data‎. ‎It is proved that different initial data can lead to different blow-up phenomena even in the same ...

متن کامل

Critical exponents in a doubly degenerate nonlinear parabolic system with inner absorptions

This paper deals with critical exponents for a doubly degenerate nonlinear parabolic system coupled via local sources and with inner absorptions under null Dirichlet boundary conditions in a smooth bounded domain. The author first establishes the comparison principle and local existence theorem for the above problem. Then under appropriate hypotheses, the author proves that the solution either ...

متن کامل

Blow-up in the Parablic Problems under Nonlinear Boundary Conditions

The paper deals with a degenerate and singular parabolic equation with nonlinear boundary condition. We first get the behavior of the solution at infinity, and establish the critical global existence exponent and critical Fujita exponent for the fast diffusive equation, furthermore give the blow-up set and upper bound of the blow-up rate for the nonglobal solutions.

متن کامل

Singular Elliptic Equations Involving a Concave Term and Critical Caffarelli-kohn-nirenberg Exponent with Sign-changing Weight Functions

In this article we establish the existence of at least two distinct solutions to singular elliptic equations involving a concave term and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999